Radar level measurement supplier factory from China: When the cover above the closed metal cover is opened, the false signal disappears, the overall noise line decreases, and the echo curve decreases. After analysis, it is determined that the closed metal cover is the main cause of false signals, the radar level meter antenna is made of plastic, and the radar waves emitted by the antenna leak into the external environment. The closed metal shield is used to cover the instrument, and the leaked radar wave signal is received by the antenna after several reflections inside the shield, generating a false level. Therefore, the metal shield was modified to a ring-shaped non-sealed shield at a later stage, and the radar level meter jump was significantly reduced. Read additional details at https://www.kaidi86.com/radar-level-meter.html.
The influence of dust accumulation on the transmitter head of the radar level meter, due to the large amount of dust in the working condition of the radar level meter, the dust is easy to adhere, and affected by the ambient temperature, the dust is wet and easy to agglomerate, and the dielectric constant will become larger and adhered The transmitter head and the wall of the bell mouth of the radar level meter affect the accuracy and stability of the radar measurement.
The electromagnetic wave emitted during measurement can pass through the vacuum, no transmission medium is required, and the anti-interference ability is strong, and it is not affected by temperature, wind, water vapor, water mist, rain, etc. It can be used for liquid level measurement of almost all liquids, and can be continuously measured on-line unattended. Large measurement range, high precision, mature technology and stable performance.
The performance of any level technology relative to instrument induced errors, calibration nuances, and vulnerabilities to process dynamics can have an immediate and adverse impact on fuel consumption. Seamless response to changes in demand and reducing maintenance associated with the instrumentation or damage to hardware are residual benefits that have their own financial ramifications; these aspects should also be considered when implementing any technology. In addition to the “open” or deaerating feedwater heater, the more common shell and tube heat exchangers/condensers can be found in larger scale steam generation cycles where their costs are offset by gains in thermal efficiency. The effectiveness of a shell and tube heat exchanger in transferring energy is contingent, barring hardware anomalies, on accurate level control.
So what can be done about these difficulties? Under the condition of strong dust, on the one hand, the radar with high transmitting energy can be selected, on the other hand, the measurement software with continuous measurement algorithm of wave-loss waiting can be selected. When the radar encounters strong dust, it will not misjudge the measurement result even if the radar loses wave for a short time. After entering the state of continuous measurement algorithm, if the reflection wave of real material surface can be recognized within the set waiting time, the correct measurement value of material surface can be obtained. In the past, only a few foreign radars have this function. At present, there are also domestic radars with this function, and the practical application effect is very good.
KAIDI level transmitter manufacturer is dedicated in providing complete customized solutions for a wide range of industrial automation process applications – in material level, liquid flow, pressure and temperature. We are constantly developing and innovating, our core vision – “to provide solutions that exceed customers’ expectations. In 2012, the company successfully expanded its operations both locally and internationally, achieving global success and recognition for quality fork type level switch, magnetic level gauge products and services. Discover more information on https://www.kaidi86.com/. Suitable for chemical industry, petroleum industry, metallurgical industry, water conservancy and electronic industry, etc.
In the measurement circuit of the radar level gauge, when there is additional DC current and voltage, it is DC interference. In severe cases, the measuring instrument will not work properly. The sources of DC interference are as follows: AC interference can be divided into line-to-line interference and ground interference. Inter-line interference refers to the AC voltage between the output ends of the radar level gauge (compensation line) under external influence. This interference is also known as lateral, common mode or common mode interference. Generally speaking, the line-to-line interference voltage can reach several millivolts or even tens of millivolts.
Under many operating conditions, ultrasonic level meter and radar level meter are commonly used. Some users are very entangled in the choice of these two level meter and do not know how to choose. Today, let’s talk about the principles and selection principles of these two types of level meter . Principle and selection principle of ultrasonic level meter. Working principle: The ultrasonic pulse probe emits a beam of ultrasonic pulses to the measured medium, and the sound wave is reflected by the liquid surface. The distance between the liquid levels is measured by measuring the time difference between the emission and reflection of the sound waves. Since the ultrasonic level gauge is not a liquid, it can be used to measure corrosive, non-volatile and non-foaming places.
Radar level measurement technology symbolizes precision and innovation in industrial level sensing. Its non-contact operation, resilience in challenging environments and ability to handle measurement scenarios have earned it a reputation. Furthermore, with the integration of IIoT capabilities and temperature compensation features radar sensors continue to evolve and make contributions to advancing processes. As automation and digitalization become more widespread across industries, radar level measurement continues to be a technology that ensures efficiency, safety and reliability in their operations. By relying on radar sensors as guardians, industries can confidently navigate the intricacies of level measurement with unwavering precision.
Application conditions, application conditions generally include calm liquid level, slightly fluctuating surface, turbulent surface, with stirring, with foam and so on. The more complex the conditions, the more interference echoes, and the smaller the actual measured range. In a complex environment, a precision radar with strong ability to deal with interference echoes or an antenna with a larger size should be selected.